
CS145 Fall 2020 Homework 2

October 6, 2020

This homework is to help familiarize you with hashes, joins, and indexes. This homework,
as with the rest of the homework in the course, is optional and will not be graded.

Assume the following numbers for hardware performance:

• Hard disk access (seek) takes 10ms

• Disk transfer speed is 100MB/sec

Practice before exam 1.
Section 2 will be on Friday, 10/09. Feel free to bring question about this homework in piazza,
office hours, or sections.

Question 1 [25 points] - Hashing

As we saw in lecture, hashing is very important for managing large data systems. For
example, it is used to map from data/search keys to the location where that data is stored
(memory address, DB block, machine/disk). Another common application is evenly dividing
a set of inputs into buckets in order to process them in parallel, for example when counting
large numbers of tuples. In this problem, we’ll get a little more intuition about hash functions
and collision resolution by looking at some examples.

Question 1.1 [5 points] - Some Intuition about Hash Collisions

The details of how different hash functions work, including how they are implemented and
their statistical properties, are mostly beyond the scope of this class. However, a feature
common to all hash functions is collisions. When dealing with hashing, it’s helpful to have
some intuition about the frequency of collisions. Recall that a collision occurs whenever for
two distinct elements a and b and a hash function h(x), h(a) = h(b).

Assume you have a hash function (the actual process by which it operates is unknown)
with the following properties:

1



• The outputs (hash values) are of size 8 bits (there are 256 possible hash values/buckets).

• The hash function distributes its outputs evenly across the entire output range (this
property is very desirable in hash functions and is called uniformity).

What is the probability of having at least one collision if we are hashing 5
inputs? Give your answer as a numerical value (not an equation) but show some
work/reasoning. A simple numerical answer with no reasoning will not count
for full points.

What about for 10 inputs? 20 inputs? 50 inputs?

NOTE: One of the interesting (and somewhat counter-intuitive) facts about hash func-
tions is that the probability of collision rises much faster than intuition might suggest. Even
when hashing relatively small numbers of inputs (w.r.t the output range), the collision prob-
ability rapidly approaches 1. See https://en.wikipedia.org/wiki/Birthday_problem for
more interesting discussion on this problem.

Question 1.2 [6 points] - Thinking about Collision Resolution

In most applications of hashing, how collisions are handled is an important part of the im-
plementation. One example of this is in the implementation of hash partition join, which
we discussed in lecture. Consider the case where we wish to join two relations R and S on a
shared attribute A. The first step in the process, partitioning, is done using a hash function.
We hash tuples from both relations using their attribute A in order to divide them up evenly
into a finite number of buckets B.

In this process of partitioning, hash collisions may occur. Explain why having
a large number of hash collisions in our buckets would harm the efficiency of the
hash partition join algorithm.

In light of this, a method is needed to address collisions. This can done with a technique
called double hashing. If the initial partition resulted in collisions, these can be resolved
by doing a second pass and re-hashing each collided element with a new hash function (on
attribute A). The result of this second hash is used as an offset to determine how many bins
to move the tuple over. For example, if a tuple is hashed initially to bin 3 and there is a
collision, if h2(tuple) = 1 then the tuple will be moved to bin 3 + 1 = 4 (if this again results
in a collision, the tuple can be shifted again by h2(tuple) until the collision is resolved). In
practice, a common choice for this second hash function is Hash2(key) = K−(key mod K),
where K is a prime smaller than the number of buckets B.

You are given B = 5. You are also given the following relation R.

2

https://en.wikipedia.org/wiki/Birthday_problem


A C E

5 93 Red
7 28 Purple
3 70 Orange
11 545 Blue
6 88 Brown

The initial hash function is h1(A) = A mod B. The second hash function is h2(A) =
3 − (A mod 3).

As part of the first step of a hash partition join, partition R using the given
hash function. Assume that the tuples are hashed into buckets in the order
they appear in the table (from top to bottom). Resolve any collisions with the
provided second hash function. You can indicate your answer in the form of a
table or by listing the tuple(s) in each bucket (B0, B1, ...).

Bonus Note: There are many other collision resolution strategies beyond those mentioned
here, each with different advantages and disadvantages which can be analyzed probabilisti-
cally. If you’re interested, CS166 covers hash tables and collision resolution in more depth.

Question 1.3 [4 Points] - Computing Counts of Pairs

As seen above, hash functions are useful whenever we need to (relatively) evenly distribute
data. Another such application is dividing across multiple machines to process in parallel.

Imagine you have created a music app. Users of your app can login, start a session, and
then play songs. The database which forms the backend to your app contains a table with
tuples (user id, session id, song id) which represent every time a user has played a song. You
wish to see which pairs of songs are most frequently listened to together in the same session.

You are given the following information:

• There are 10 million users

• There are 1 thousand songs

• There are 4 billion sessions

• The user IDs are 3 bytes

• The song IDs are 2 bytes

• The session IDs are 4 bytes

• The avg. number of unique songs played per session is 5

3



Assume all your data is stored on hard disks and use the values for disk seek/scan times
from the top of the assignment. Assume that data is stored sequentially on disk.

Calculate the total time required to compute the counts for each distinct pair.
Do not count pairs with the same song (i.e. Song A - Song A) and assume that
when counting we do not count different orderings of the same songs as distinct
pairs (i.e. if Song A and Song B are played in the same session, we only count
the pair Song A - Song B and do not count the pair Song B - Song A). Assume
that it takes 1 hr. to sort all pairs using the external merge sort algorithm.
Please show some work/reasoning.

Question 1.4 [6 Points] - Parallelizing Counting with Hashing

Now imagine you have a hash function which maps from any 64-bit input uniformly to a
32-bit hash value.

Explain how you could use it to parallelize the counting across n machines.

What would the total required time to compute the counts for each pair be
once you’ve used your hash function to divide the pair tuples across 6 separate
disks (which can write in parallel)? Please show some work/reasoning. A simple
numerical answer with no reasoning will not count for full points.

Question 1.5 [4 Points] - Thinking a Little More About Hashing

Consider the application of hashing where we want to parallelize a task across n machines
(where n is reasonably small, say 100) versus the task of using hashing as a way to map keys
to a location (e.g. generating IDS).

For each of these two applications, is a low collision rate important? For each
of these two applications, is uniformity important? Why? When thinking of
uniformity, please include the application performance and efficiency into con-
sideration.

4



Question 2 [25 points] - External Merge Algorithm

This problem explores a variant of the external merge sort algorithm. Below in the
subproblems, you will calculate the cost of performing the modified external merge sort.

Recall that sequential IO (i.e. involving reading from / writing to consecutive pages) is
generally much faster that random access IO (any reading / writing that is not sequential).
Additionally, on newer memory technologies like SSD reading data can be faster than writing
data (if you want to read more about SSD access patterns look here).

For example, if we read 8 consecutive pages from file A, this should be much faster than
reading 2 pages from A, then 4 pages from file B, then 2 pages from A.

In this problem, we will begin to model this, by assuming that 8 sequential
READS are ”free”, i.e. the total cost of 8 sequential reads is 1 IO. We will also
assume that the writes are always twice as expensive as a read. Sequential writes
are never free, therefore the cost of N writes is always 2N .

Please note the following:

• NO REPACKING: Consider the external merge sort algorithm using the basic op-
timizations we present in class, but do not use the repacking optimization covered in
class.

• ONE BUFFER PAGE RESERVED FOR OUTPUT: Assume we use one page
for output in a merge, e.g. a B-way merge would require B+1 buffer pages.

• REMEMBER TO ROUND: Take ceilings (i.e. rounding up to nearest integer
values) into account in this problem. Note that we have sometimes omitted these (for
simplicity) in lecture.

• Consider worst case cost: In other words, if 2 reads could happen to be sequential,
but in general might not be, consider these random IO.

Question 2.1 [12 points]

Consider a modification of the external merge sort algorithm where reads are always read
in 8-page chunks (i.e. 8 pages sequentially at a time) so as to take advantage of sequential
reads. Calculate the cost of performing the external merge sort for a setup having B+1=40
buffer pages and an unsorted input file with 320 pages.

Show the steps of your work and make sure to explain your reasoning if necessary.

5

http://codecapsule.com/2014/02/12/coding-for-ssds-part-5-access-patterns-and-system-optimizations/


Question 2.1.1 [3 points]

What is the exact IO cost of splitting and sorting the files? As is standard we want runs of
size B+1.

Question 2.1.2 [3 points]

After the file is split and sorted, we can merge n runs into 1 using the merge process. What
is the largest n we could have, given reads are always read in 8-page chunks? Note: this is
known as the arity of the merge.

Question 2.1.3 [3 points]

How many passes of merging are required?

Question 2.1.4 [3 points]

What is the total IO cost of running this external merge sort algorithm? Do not forget to
add in the remaining passes (if any) of merging.

Question 2.2 [13 points]

Now, we’ll generalize the reasoning above by writing formula that compute the approximate
cost of performing this version of external merge sort for a setup having B+1 buffer pages,
a file with N pages, and where we now read in P-page chunks (replacing our fixed 8 page
chunks in the previous section.

*Note: our approximation will be a small one- for simplicity, we’ll assume that each pass of
the merge phase has the same IO cost.

We’ll calculate the IO cost for each merge phase and compute the total cost as the product of
the cost of reading in and writing out all the data (which we do each pass), and the number
of passes we’ll have to do. Even though this is an approximation, make sure to take care of
floor / ceiling operations- i.e. rounding down / up to integer values properly! Importantly,
to simplify your calculations, you can assume:

• (B + 1)%P == 0 (i.e. the buffer size is divisible by the chunk size)

• N%(B + 1) == 0 (i.e. the file size is divisible by the buffer size)

Question 2.2.1 [4 points]

First, write the formula that computes the exact total IO cost to create the initial runs in
terms of B, N, and P.

6



Question 2.2.2 [4 points]

Next, write the formula that computes the approximate total IO cost to read in and then
write out all the data during one pass of the merge in terms of B, N, and P.

Question 2.2.3 [3 points]

Next, write the formula that computes the exact total number of passes we’ll need to do in
terms of B, N, and P.

Question 2.2.4 [2 points]

Finally, write the formula that computes the total cost in terms of B, N, and P.

7



Question 3 [15 points] - B+ Trees

We’ve seen how B+ Trees can be used to build indices for efficient access to data. In this
question, we’ll strengthen our present understanding of B+ trees and look at a quick-yet-
effective optimization.

Let’s assume you’ve inherited a database of 2 billion rows from your relatives. The rows
contain a string field called ‘unique name’ and a few other fields. Given the enormous size
of the database, you decide to build a B+ tree indices on the ‘unique name’ field.

Use the following values for calculations:

• Each page is exactly 4KB (4096 Bytes)

• The size of each key in your B+ tree is 128 bytes

• The size of each pointer in your B+ tree is 8 bytes

• Your system has 48GB of free RAM and infinite hard disk space

• Assume a B+ tree node must fit into a single page.

• The constant fan-out f of the B+ tree is 66.

Let’s look at how our B+ tree would look with the amount of data we need to index.

Fit it in the system

Question 3.1 [3 points]

How many pages can we store in the first level? In the second level? In tenth level?

Question 3.2 [6 points]

Let’s plan out the space required for our index. How many levels do we need in our B+
tree? Compute the space required by each index level (round up to the first decimal place).

Question 3.3 [6 points]

Assume that each level must either be completely on RAM or disk. Note that all data pages
stay on the disk. What is the worst case IO requirement (number of disk accesses) to access
a record?

8



Question 4 [21 points] - Join Implementation

This problem will explore different join implementations and the associated IO costs for each
model. Let R(a, b), S(b, c), and T(c, d) be tables. For the purpose of this question, use the
values provided below.

• P(R) = number of pages of R = 20

• T(R) = number of tuples of R = 1600

• P(S) = number of pages of S = 200

• T(S) = number of tuples of S = 15000

• P(T) = number of pages of T = 2000

• P(R, S) = number of pages in output RS = 100

• P(S, T) = number of pages in output ST = 1000

• P(R, S, T) = number of pages in output RST = 500

• B = number of buffer pages = 32

Question 4.1 [1 point]

Let us start by considering a simple nested loop join. Compute the IO cost for a simple
nested loop join if R is the ”outer loop” and S is the ”inner loop.”

Question 4.2 [1 point]

Compute the IO cost for a simple nested loop join if S is the ”outer loop” and R is the ”inner
loop.”

Question 4.3 [4 points]

Now consider using a block nested loop join. Compute the IO cost for joining R, S and then
joining the result with T. Then compute the IO cost for joining S, T and then joining the
result with R.

Question 4.4 [2 points]

Now consider using a sort-merge join. Compute the IO cost for joining R, S and then joining
the result with T. Assume that the tables are not sorted before starting. Also assume that
we do not need to do any back up as described in lecture.

9



Question 4.5 [2 points]

Again, using a sort-merge join, compute the IO cost for joining S, T and then joining the
result with R. Assume that the tables are not sorted before starting. Also assume that we
do not need to do any back up as described in lecture.

Question 4.6 [2 points]

Now suppose we only want to join R and S (with sort-merge join) but this time all values
for the join attribute are the same. What would be the IO cost now?

Question 4.7 [2 points]

Now consider using a hash join. Compute the IO cost for joining R, S and then joining the
result with T.

Question 4.8 [2 points]

Again, using a hash join, compute the IO cost for joining S, T and then joining the result
with R.

Question 4.9 [5 points]

For the query plan where join1 = R(a, b), S(b, c) and join2 = join1(a, b, c), T (c, d), find a
configuration where using hash join for join1 and sort-merge join for join2 is cheaper than
sort-merge join for join1 and hash join for join2 by adjusting buffer sizes and the number of
pages in each table. Provide your answer in terms of the variables listed at the start of this
question (such as P(R), P(R, S), B, etc.). The output sizes you choose for P(R, S) and P(R,
S, T) must be non-zero and feasible (e.g. the maximum output size of join1 is P(R)*P(S)).

10


